Etidronate prevents, but does not reverse, ectopic mineralization in a mouse model of pseudoxanthoma elasticum (Abcc6-/-)

35Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

Pseudoxanthoma elasticum (PXE) and generalized arterial calcification of infancy (GACI) are heritable disorders manifesting with ectopic tissue mineralization. Most cases of PXE and some cases of GACI are caused by mutations in the ABCC6 gene, resulting in reduced plasma pyrophosphate (PPi) levels. There is no effective treatment for these disorders. It has been suggested that administration of bisphosphonates, stable and non-hydrolyzable PPi analogs, could counteract ectopic mineralization in these disorders. In this study we tested the potential efficacy of etidronate, a first generation bisphosphonate, on ectopic mineralization in the muzzle skin of Abcc6-/- mice, a model of PXE. The Abcc6-/- mice received subcutaneous injections of etidronate, 0.283 and 3.40 mg/kg per injection (0.01× and 0.12×), twice a week, in both prevention and reversal studies. Ectopic mineralization in the dermal sheath of vibrissae in muzzle skin was determined by histopathologic analysis and by direct chemical assay for calcium content. Subcutaneous injection of etidronate prevented ectopic mineralization but did not reverse existing mineralization. The effect of etidronate was accompanied by alterations in the trabecular bone microarchitecture, determined by micro-computed tomography. The results suggest that etidronate may offer a potential treatment modality for PXE and GACI caused by ABCC6 mutations. Etidronate therapy should be initiated in PXE patients as soon as the diagnosis is made, with careful monitoring of potential side effects.

Cite

CITATION STYLE

APA

Li, Q., Kingman, J., Sundberg, J. P., Levine, M. A., & Uitto, J. (2018). Etidronate prevents, but does not reverse, ectopic mineralization in a mouse model of pseudoxanthoma elasticum (Abcc6-/-). Oncotarget, 9(56), 30721–30730. https://doi.org/10.18632/oncotarget.10738

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free