Discrimination of grape seeds using laser-induced breakdown spectroscopy in combination with region selection and supervised classification methods

25Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

The wine-making industry generates a considerable amount of grape pomace. Grape seeds, as an important part of pomace, are rich in bioactive compounds and can be reutilized to produce useful derivatives. The nutritional properties of grape seeds are largely influenced by the cultivar, which calls for effective identification. In the present work, the spectral profiles of grape seeds belonging to three different cultivars were collected by laser-induced breakdown spectroscopy (LIBS). Three conventional supervised classification methods and a deep learning method, a one-dimensional convolutional neural network (CNN), were applied to establish discriminant models to explore the relationship between spectral responses and cultivar information. Interval partial least squares (iPLS) algorithm was successfully used to extract the spectral region (402.74–426.87 nm) relevant for elemental composition in grape seeds. By comparing the discriminant models based on the full spectra and the selected spectral regions, the CNN model based on the full spectra achieved the optimal overall performance, with classification accuracy of 100% and 96.7% for the calibration and prediction sets, respectively. This work demonstrated the reliability of LIBS as a rapid and accurate approach for identifying grape seeds and will assist in the utilization of certain genotypes with desirable nutritional properties essential for production rather than their being discarded as waste.

Cite

CITATION STYLE

APA

He, Y., Zhao, Y., Zhang, C., Li, Y., Bao, Y., & Liu, F. (2020). Discrimination of grape seeds using laser-induced breakdown spectroscopy in combination with region selection and supervised classification methods. Foods, 9(2). https://doi.org/10.3390/foods9020199

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free