Tunable Domain Switching Features of Incommensurate Antiferroelectric Ceramics Realizing Excellent Energy Storage Properties

91Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

An incommensurate modulated antiferroelectric phase is a key part of ideal candidate materials for the next generation of dielectric ceramics with excellent energy storage properties. However, there is less research carried out when considering its relatively low polarization response. Here, the incommensurate phase is modulated by stabilizing the antiferroelectric phase and the energy storage performance of the incommensurate phase under ultrahigh electric field is studied. The tape-casting method is applied to construct dense and thin ceramics. La3+ doping induces a room-temperature incommensurate antiferroelectric orthorhombic matrix. With little Cd2+, the extremely superior energy storage performances arose as follows: when 0.03, the recoverable energy storage density reaches ≈19.3 J cm-3, accompanying an ultrahigh energy storage efficiency of ≈91% (870 kV cm-1); also, a giant discharge energy density of ≈15.4 J cm-3 emerges during actual operation. In situ observations demonstrate that these superior energy storage properties originate from the phase transition from the incommensurate antiferroelectric orthorhombic phase to the induced rhombohedral relaxor ferroelectric one. The adjustable incommensurate period affects the depolarization response. The revealed phase-transition mechanism enriches the existing antiferroelectric–ferroelectric transition. Attention to the incommensurate phase can provide a reference for the selection of the next generation of high-performance antiferroelectric materials.

Cite

CITATION STYLE

APA

Ge, G., Shi, C., Chen, C., Shi, Y., Yan, F., Bai, H., … Zhai, J. (2022). Tunable Domain Switching Features of Incommensurate Antiferroelectric Ceramics Realizing Excellent Energy Storage Properties. Advanced Materials, 34(24). https://doi.org/10.1002/adma.202201333

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free