Retraction: A Review on Wearable Epileptic Seizure Prediction System

1Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Epileptic is a neurological condition that affects approximately 50 million people worldwide. Epileptic seizure prediction lowers the risk of a patient's life being endangered by a seizure that occurs unexpectedly. The latest seizure prediction methods are computationally intensive due to the complicated hand-crafted features they extract, and they take a lot of memory to store their parameters, which makes them Inappropriate for IoT and connected systems with limited capabilities. In this paper, a deep learning-based IoT framework for accurate epileptic seizure prediction is presented. The proposed method combines the feature extraction and classification stages into a single integrated system in which raw data heartbeat and temperature signals are implemented without any pre-processing, reducing computing complexity even further. A machine learning based prediction model is proposed that extracts the relevant information from the temperature, heartbeat and haemoglobin value using of machine learning algorithm The health condition of patient or person can be found and give some analysis result like normal or abnormal condition. If abnormal condition is observed then the system predicts some medicine or dosage based on health condition and also send alert message using of GSM. In this work, a location tracking of patient is also included and alert is sent to authorized person when the patient fall down or patient get panic or abnormal health

Cite

CITATION STYLE

APA

Seethalakshmi, V., Naveenkumar, P., Prabu, G. K., & Kumaar, S. P. (2021, May 27). Retraction: A Review on Wearable Epileptic Seizure Prediction System. Journal of Physics: Conference Series. IOP Publishing Ltd. https://doi.org/10.1088/1742-6596/1916/1/012075

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free