Decoding Cancer Evolution: Integrating Genetic and Non-Genetic Insights

9Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

The development of cancer begins with cells transitioning from their multicellular nature to a state akin to unicellular organisms. This shift leads to a breakdown in the crucial regulators inherent to multicellularity, resulting in the emergence of diverse cancer cell subpopulations that have enhanced adaptability. The presence of different cell subpopulations within a tumour, known as intratumoural heterogeneity (ITH), poses challenges for cancer treatment. In this review, we delve into the dynamics of the shift from multicellularity to unicellularity during cancer onset and progression. We highlight the role of genetic and non-genetic factors, as well as tumour microenvironment, in promoting ITH and cancer evolution. Additionally, we shed light on the latest advancements in omics technologies that allow for in-depth analysis of tumours at the single-cell level and their spatial organization within the tissue. Obtaining such detailed information is crucial for deepening our understanding of the diverse evolutionary paths of cancer, allowing for the development of effective therapies targeting the key drivers of cancer evolution.

Cite

CITATION STYLE

APA

Ashouri, A., Zhang, C., & Gaiti, F. (2023, October 1). Decoding Cancer Evolution: Integrating Genetic and Non-Genetic Insights. Genes. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/genes14101856

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free