An EP4 receptor agonist inhibits cardiac fibrosis through activation of PKA signaling in hypertrophied heart

33Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Cardiac fibrosis is a pathological feature of myocardium of failing heart and plays causative roles in arrhythmia and cardiac dysfunction, but its regulatory mechanisms remain largely elusive. In this study, we investigated the effects of the novel EP4 receptor agonist ONO-0260164 on cardiac fibrosis in hypertrophied heart and explored the regulatory mechanisms in cardiac fibroblasts. In a mouse model of cardiac hypertrophy generated by transverse aortic constriction (TAC), ONO-0260164 treatment significantly prevented systolic dysfunction and progression of myocardial fibrosis at 5 weeks after TAC. In cultured neonatal rat cardiac fibroblasts, transforming growth factor-β1 (TGF-β1) induced upregulation of collagen type 1, alpha 1 (Col1a1) and type 3, alpha 1 (Col3a1), which was inhibited by ONO-0260164 treatment. ONO-0260164 activated protein kinase A (PKA) in the presence of TGF-β1 in the cardiac fibroblasts. PKA activation suppressed an increase in collagen expression induced by TGF-β1, indicating the important inhibitory roles of PKA activation in TGF-β1- mediated collagen induction. We have demonstrated for the first time the antifibrotic effects of the novel EP4 agonist ONO-0260164 in vivo and in vitro, and the important role of PKA activation in the effects.

Author supplied keywords

Cite

CITATION STYLE

APA

Wang, Q., Oka, T., Yamagami, K., Lee, J. K., Akazawa, H., Naito, A. T., … Komuro, I. (2017). An EP4 receptor agonist inhibits cardiac fibrosis through activation of PKA signaling in hypertrophied heart. International Heart Journal, 58(1), 107–114. https://doi.org/10.1536/ihj.16-200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free