177Lu-labeled PSMA targeting therapeutic with optimized linker for treatment of disseminated prostate cancer; evaluation of biodistribution and dosimetry

5Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Introduction: Prostate specific membrane antigen (PSMA), highly expressed in metastatic castration-resistant prostate cancer (mCRPC), is an established therapeutic target. Theranostic PSMA-targeting agents are widely used in patient management and has shown improved outcomes for mCRPC patients. Earlier, we optimized a urea-based probe for radionuclide visualization of PSMA-expression in vivo using computer modeling. With the purpose to develop a targeting agent equally suitable for radionuclide imaging and therapy, the agent containing DOTA chelator was designed (BQ7876). The aim of the study was to test the hypothesis that 177Lu-labeled BQ7876 possesses target binding and biodistribution properties potentially enabling its use for radiotherapy. Methods: BQ7876 was synthesized and labeled with Lu-177. Specificity and affinity of [177Lu]Lu-BQ7876 to PSMA-expressing PC3-pip cells was evaluated and its processing after binding to cells was studied. Animal studies in mice were performed to assess its biodistribution in vivo, target specificity and dosimetry. [177Lu]Lu-PSMA-617 was simultaneously evaluated for comparison. Results: BQ7876 was labeled with Lu-177 with radiochemical yield >99%. Its binding to PSMA was specific in vitro and in vivo when tested in antigen saturation conditions as well as in PSMA-negative PC-3 tumors. The binding of [177Lu]Lu-BQ7876 to living cells was characterized by rapid association, while the dissociation included a rapid and a slow phase with affinities KD1 = 3.8 nM and KD2 = 25 nM. The half-maximal inhibitory concentration for natLu-BQ7876 was 59 nM that is equal to 61 nM for natLu-PSMA-617. Cellular processing of [177Lu]Lu-BQ7876 was accompanied by slow internalization. [177Lu]Lu-BQ7876 was cleared from blood and normal tissues rapidly. Initial elevated uptake in kidneys decreased rapidly, and by 3 h post injection, the renal uptake (13 ± 3%ID/g) did not differ significantly from tumor uptake (9 ± 3%ID/g). Tumor uptake was stable between 1 and 3 h followed by a slow decline. The highest absorbed dose was in kidneys, followed by organs and tissues in abdomen. Discussion: Biodistribution studies in mice demonstrated that targeting properties of [177Lu]Lu-BQ7876 are not inferior to properties of [177Lu]Lu-PSMA-617, but do not offer any decisive advantages.

Cite

CITATION STYLE

APA

Abouzayed, A., Seitova, K., Lundmark, F., Bodenko, V., Oroujeni, M., Tolmachev, V., … Orlova, A. (2023). 177Lu-labeled PSMA targeting therapeutic with optimized linker for treatment of disseminated prostate cancer; evaluation of biodistribution and dosimetry. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1221103

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free