This paper presents a supervised Aspect Based Sentiment Analysis (ABSA) system. Our aim is to develop a modular platform which allows to easily conduct experiments by replacing the modules or adding new features. We obtain the best result in the Opinion Target Extraction (OTE) task (slot 2) using an off-the-shelf sequence labeler. The target polarity classification (slot 3) is addressed by means of a multiclass SVM algorithm which includes lexical based features such as the polarity values obtained from domain and open polarity lexicons. The system obtains accuracies of 0.70 and 0.73 for the restaurant and laptop domain respectively, and performs second best in the out-of-domain hotel, achieving an accuracy of 0.80.
CITATION STYLE
Vicente, I. S., Saralegi, X., & Agerri, R. (2015). EliXa: A modular and flexible ABSA platform. In SemEval 2015 - 9th International Workshop on Semantic Evaluation, co-located with the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2015 - Proceedings (pp. 748–752). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/s15-2127
Mendeley helps you to discover research relevant for your work.