In this paper, the amplify and forward (AF) cooperative technique for one- and two-way relays has been implemented for underwater optical wireless communication (UOWC). UOWC suffers from scattering, absorption, and turbulence effects. The distance of communication between UOWC devices is typically within the range of 100 m. So relay-based UWOC has been proposed to improve the performance of device-to-device (D2D) based UWOC by increasing the effective link range. Performance analysis of unidirectional and bidirectional relay-based systems has been carried out in terms of outage probability and average symbol error probability (ASEP) for log-normal underwater fading channels. The analytical results have been validated by means of Monte Carlo simulations. Closed form expressions for ASEP have been obtained by using a mixture of gamma distributions, which was not possible using log-normal distributions. It has been observed that bidirectional relays, even though they have a better data rate than unidirectional relays, suffer in terms of outage probability.
CITATION STYLE
Bhowal, A., & Kshetrimayum, R. S. (2018). Performance analysis of one- and two-way relays for underwater optical wireless communications. OSA Continuum, 1(4), 1400. https://doi.org/10.1364/osac.1.001400
Mendeley helps you to discover research relevant for your work.