Linking radio and gamma-ray emission in Ap Librae

44Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Ap Lib is one of the rare low-synchrotron-peaked blazars detected so far at TeV energies. This type of source is not properly modelled by standard one-zone leptonic synchrotron self-Compton (SSC) emission scenarios. The aim of this paper is to study the relevance of additional components that should naturally occur in an SSC scenario for a better understanding of the emission mechanisms, especially at very high energies (VHE). We use simultaneous data from a multi-wavelength campaign of the Planck, Swift-UVOT, and Swift-XRT telescopes carried out in February 2010, as well as quasi-simultaneous data of WISE, Fermi, and HESS taken in 2010. The multi-lambda emission of Ap Lib is modelled by a blob-in-jet SSC scenario including the contribution of the base of the VLBI-extended jet, the radiative blob-jet interaction, the accretion disk, and its associated external photon field. We show that signatures of a strong parsec-scale jet and of an accretion disk emission are present in the spectral energy distribution. We can link the observational VLBI jet features from MOJAVE to parameters expected for a VHE-emitting blob accelerated near the jet base. The VHE emission appears to be dominated by the inverse-Compton effect of the blob relativistic electrons interacting with the jet synchrotron radiation. In this scenario, Ap Lib appears as an intermediate source between BL Lac objects and flat-spectrum radio quasars. Ap Lib could be a bright representative of a specific class of blazars, in which the parsec-scale jet luminosity is no more negligible compared to the blob and contributes to the high-energy emission through inverse-Compton processes.

Cite

CITATION STYLE

APA

Hervet, O., Boisson, C., & Sol, H. (2015). Linking radio and gamma-ray emission in Ap Librae. Astronomy and Astrophysics, 578. https://doi.org/10.1051/0004-6361/201425330

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free