Importance of Protocol Design for Suitable Green In Situ Synthesis of ZnO on Cotton Using Aqueous Extract of Japanese Knotweed Leaves as Reducing Agent

7Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

This work presents two protocols for the green in situ synthesis of zinc oxide nanoparticles (ZnO-NP) on cotton with the aim to develop sustainable cotton fabric with an ultraviolet protection factor (UPF). The protocols differed in the order of immersing cotton fabric in reactive solutions of three batches, i.e., precursor (0.1 M zinc acetate dihydrate), reducing agent (aqueous extract of Japanese knotweed leaves) and alkali (wood ash waste). The scanning electron microscope (SEM) results showed that ZnO-NP were successfully synthesised on cotton using both protocols; however, only the protocol where cotton was first immersed in alkali, then in the precursor and, lastly, in the reducing agent enabled very high UPF and higher amount of Zn present on the sample. Due to the different order of cotton fabric immersion in the reactive solutions, dissimilar morphology of the ZnO particles was observed, which resulted in different UV blocking abilities of the samples. The antioxidant analysis (DPPH) showed that the natural reducing agent prepared from Japanese knotweed leaves has very high antioxidant activity, which is attributed to phenolic compounds present in the plant. The reflectance spectroscopy results confirmed that the colour yield and colour of the samples did not influence the UPF value. This protocol is an example of green circular economy where waste materials of invasive alien plant species and pellet heating was used as a natural source of phytochemicals, for the direct synthesis of ZnO-NP to develop cotton fabric with UV-protective properties.

Cite

CITATION STYLE

APA

Verbič, A., Brenčič, K., Primc, G., & Gorjanc, M. (2022). Importance of Protocol Design for Suitable Green In Situ Synthesis of ZnO on Cotton Using Aqueous Extract of Japanese Knotweed Leaves as Reducing Agent. Forests, 13(2). https://doi.org/10.3390/f13020143

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free