Novel solid supports, consisting of polypropylene blended with various agricultural materials (pp composite), were evaluated as supports for pure- and mixed-culture continuous lactic acid fermentations in biofilm reactors. Streptomyces viridosporus T7A (ATCC 39115) was used to form a biofilm, and Lactobacillus casei subsp. rhamnosus (ATCC 11443) was used for lactic acid production. For mixed-culture fermentations, a 15-day continuous fermentation of S. viridosporus was performed initially to establish the biofilm. The culture medium was then inoculated with L. casei subsp. rhamnosus. For pure- culture fermentation, L. casei subsp. rhamnosus was inoculated directly into the reactors containing sterile pp composite chips. The biofilm reactors containing various pp composite chips were compared with a biofilm reactor containing pure polypropylene chips and with a reactor containing a suspension culture. Continuous fermentation was started, and each flow rate (0.06 to 1.92 ml/min) was held constant for 24 h; steady state was achieved after 10 h. Lactic acid production was determined throughout the 24-h period by high-performance liquid chromatography. Production rates that were two to five times faster than those of the suspension culture (control) were observed for the pure- and mixed-culture bioreactors. Both lactic acid production rates and lactic acid concentrations in the culture medium were consistently higher in mixed-culture than in pure-culture fermentations. Biofilm formation on the chips was detected at harvest by chip clumping and Gram staining.
CITATION STYLE
Demirci, A., Pometto, A. L., & Johnson, K. E. (1993). Lactic acid production in a mixed-culture biofilm reactor. Applied and Environmental Microbiology, 59(1), 203–207. https://doi.org/10.1128/aem.59.1.203-207.1993
Mendeley helps you to discover research relevant for your work.