Ferric ions modified polyvinyl alcohol for enhanced molecular structure and mechanical performance

20Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

The highly crystallized molecular structure of polyvinyl alcohol (PVA) makes the polymer with poor performance in mechanical strength and water resistance. To modify the molecular structure of PVA and to diminish the complicated procedures and environmental impacts, ferric ions (in ion composite form) have been used to set the interactions with the molecule chains of PVA. The crystallinity, chemical groups change, and mechanical performance of the polymer has been confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), and the bonding/membrane tensile strength test. The crystallinity of PVA is reduced from 41.6% to 7.7% with the addition of 2.0% of ferric ions. The tensile strength of the modified PVA membrane is increased by 240%. Moreover, with tougher structure and improved fluidity, the strength of ferric ions modified PVA bonded wood samples is increased by 157%. The modification of PVA with ion composite may have vast applications in many fields, such as paper industry, wood adhesives, functional materials, and polymer structure design.

Cite

CITATION STYLE

APA

Su, Y., Wu, Y., Liu, M., Qing, Y., Zhou, J., & Wu, Y. (2020). Ferric ions modified polyvinyl alcohol for enhanced molecular structure and mechanical performance. Materials, 13(6). https://doi.org/10.3390/ma13061412

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free