Abstract
FosA proteins confer fosfomycin resistance to Gram-negative pathogens via glutathione-mediated modification of the antibiotic. In this study, we assessed whether inhibition of FosA by sodium phosphonoformate (PPF) (foscarnet), a clinically approved antiviral agent, would reverse fosfomycin resistance in representative Gram-negative pathogens. The inhibitory activity of PPF against purified recombinant FosA from Escherichia coli (FosA3), Klebsiella pneumoniae (FosAKP), Enterobacter cloacae (FosAEC), and Pseudomonas aeruginosa (FosAPA) was determined by steady-state kinetic measurements. The antibacterial activity of PPF against FosA in clinical strains of these species was evaluated by susceptibility testing and time-kill assays. PPF increased the Michaelis constant (Km) for fosfomycin in a dose-dependent manner, without affecting the maximum rate (Vmax) of the reaction, for all four FosA enzymes tested, indicating a competitive mechanism of inhibition. Inhibitory constant (Ki) values were 22.6, 35.8, 24.4, and 56.3 M for FosAKP, FosAEC, FosAPA, and FosA3, respectively. Addition of clinically achievable concentrations of PPF (667 M) reduced the fosfomycin MICs by 4-fold among 52% of the K. pneumoniae, E. cloacae, and P. aeruginosa clinical strains tested and led to a bacteriostatic or bactericidal effect in time-kill assays among representative strains. PPF inhibits FosA activity across Gram-negative species and can potentiate fosfomycin activity against the majority of strains with chromosomally encoded fosA. These data suggest that PPF may be re-purposed as an adjuvant for fosfomycin to treat infections caused by some FosA-producing, multidrug-resistant, Gram-negative pathogens.
Author supplied keywords
Cite
CITATION STYLE
Ito, R., Tomich, A. D., McElheny, C. L., Mettus, R. T., Sluis-Cremer, N., & Doi, Y. (2017). Inhibition of fosfomycin resistance protein FosA by phosphonoformate (foscarnet) in multidrug-resistant gram-negative pathogens. Antimicrobial Agents and Chemotherapy, 61(12). https://doi.org/10.1128/AAC.01424-17
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.