Abstract
HIV transactivator protein (Tat) plays a pivotal role in viral replication through modulation of cellular transcription factors and transactivation of viral genomic transcription. The effect of HIV-1 Tat on reverse transcription has long been described in the literature, however, that of HIV-2 is understudied. Sequence homology between Tat proteins of HIV-1 and 2 is estimated to be less than 30%, and the main difference lies within their N-terminal region. Here, we describe Y44A-inactivating mutation of HIV-2 Tat, studying its effect on capsid production, reverse transcription, and the efficiency of proviral transcription. Investigation of the mutation was performed using sequence-and structure-based in silico analysis and in vitro experiments. Our results indicate that the Y44A mutant HIV-2 Tat inhibited the activity and expression of RT (reverse transcriptase), in addition to diminishing Tat-dependent LTR (long terminal repeat) transactivation. These findings highlight the functional importance of the acidic domain of HIV-2 Tat in the regulation of reverse transcription and transactivation of the integrated provirions.
Author supplied keywords
Cite
CITATION STYLE
Szojka, Z., Mótyán, J. A., Miczi, M., Mahdi, M., & Tőzsér, J. (2020). Y44a mutation in the acidic domain of hiv-2 tat impairs viral reverse transcription and ltr-transactivation. International Journal of Molecular Sciences, 21(16), 1–16. https://doi.org/10.3390/ijms21165907
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.