Accessible analysis of longitudinal data with linear mixed effects models

13Citations
Citations of this article
47Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Longitudinal studies are commonly used to examine possible causal factors associated with human health and disease. However, the statistical models, such as two-way ANOVA, often applied in these studies do not appropriately model the experimental design, resulting in biased and imprecise results. Here, we describe the linear mixed effects (LME) model and how to use it for longitudinal studies. We re-analyze a dataset published by Blanton et al. in 2016 that modeled growth trajectories in mice after microbiome implantation from nourished or malnourished children. We compare the fit and stability of different parameterizations of ANOVA and LME models; most models found that the nourished versus malnourished growth trajectories differed significantly.We show through simulation that the results from the two-way ANOVA and LME models are not always consistent. Incorrectly modeling correlated data can result in increased rates of false positives or false negatives, supporting the need to model correlated data correctly. We provide an interactive Shiny App to enable accessible and appropriate analysis of longitudinal data using LME models.

Cite

CITATION STYLE

APA

Murphy, J. I., Weaver, N. E., & Hendricks, A. E. (2022). Accessible analysis of longitudinal data with linear mixed effects models. DMM Disease Models and Mechanisms, 15(5). https://doi.org/10.1242/dmm.048025

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free