Long-Term Energy Yield Analysis of the Rooftop PV System in Climate Conditions of Poland

3Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

In the past four years, the number of prosumers utilizing photovoltaic (PV) installations in Poland has increased significantly, exceeding 1.3 million, reaching a total power capacity of 10.5 GW by the end of 2023. This paper presents a three-year energy yield analysis of the prosumer PV systems operating in Eastern Poland. The 9.6 kW system consists of high-efficiency monocrystalline photovoltaic modules in half-cut technology. Over the three years of operation, specific yields have been analyzed along with weather parameters, such as solar intensity, outdoor temperature, humidity, wind speed, rainfall, or snowfall. The average annual final yield was found to be relatively high, exceeding 1000 kWh·kW−1 in each of the analysed years. The highest monthly specific yields of the analysed period were noticed during the summer, reaching the maximum value of 164 kWh·kW−1 in 2022. The daily final yields varied from a minimum of 0.15 kWh·kW−1 in Winter 2021 to a maximum of 6.8 kWh·kW−1 in Spring 2022. Weather conditions increasing the energy yields, such as low average ambient temperatures together with high insolation periods, were noticed. Energy production in such favorable conditions reached a surprisingly high value of energy yield in April 2020, comparable to the summer months (151.0 kWh·kW−1). The occurrence of heavy rainfall in summer was also noted as a desirable effect that leads to the natural cleaning of the PV modules. The average performance ratio during the analyzed period was found to be 0.85. The energy production of the PV system allowed the reduction of about 21 tons of CO2 emission.

Cite

CITATION STYLE

APA

Gulkowski, S., & Krawczak, E. (2024). Long-Term Energy Yield Analysis of the Rooftop PV System in Climate Conditions of Poland. Sustainability (Switzerland) , 16(8). https://doi.org/10.3390/su16083348

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free