Multiple feature reweight DenseNet for image classification

175Citations
Citations of this article
122Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recent network research has demonstrated that the performance of convolutional neural networks can be improved by introducing a learning block that captures spatial correlations. In this paper, we propose a novel multiple feature reweight DenseNet (MFR-DenseNet) architecture. The MFR-DenseNet improves the representation power of the DenseNet by adaptively recalibrating the channel-wise feature responses and explicitly modeling the interdependencies between the features of different convolutional layers. First, in order to perform dynamic channel-wise feature recalibration, we construct the channel feature reweight DenseNet (CFR-DenseNet) by introducing the squeeze-and-excitation module (SEM) to DenseNet. Then, to model the interdependencies between the features of different convolutional layers, we propose the double squeeze-and-excitation module (DSEM) and construct the inter-layer feature reweight DenseNet (ILFR-DenseNet). In the last step, we designed the MFR-DenseNet by combining the CFR-DenseNet and the ILFR-DenseNet with an ensemble learning approach. Our experiments demonstrate the effectiveness of CFR-DenseNet, ILFR-DenseNet, and MFR-DenseNet. More importantly, the MFR-DenseNet drops the error rate on CIFAR-10 and CIFAR-100 by a large margin with significantly fewer parameters. Our 100-layer MFR-DenseNet (with 7.1M parameters) model achieves competitive results on CIFAR-10 and CIFAR-100 data sets, with test errors of 3.57% and 18.27% respectively, achieving a 4.5% relative improvement on CIFAR-10 and a 5.09% relative improvement on CIFAR-100 over the best result of DenseNet (with 27.2M parameters).

Cite

CITATION STYLE

APA

Zhang, K., Guo, Y., Wang, X., Yuan, J., & Ding, Q. (2019). Multiple feature reweight DenseNet for image classification. IEEE Access, 7, 9872–9880. https://doi.org/10.1109/ACCESS.2018.2890127

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free