Giant magnetostriction in annealed Co1-xFex thin-films

213Citations
Citations of this article
236Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Chemical and structural heterogeneity and the resulting interaction of coexisting phases can lead to extraordinary behaviours in oxides, as observed in piezoelectric materials at morphotropic phase boundaries and relaxor ferroelectrics. However, such phenomena are rare in metallic alloys. Here we show that, by tuning the presence of structural heterogeneity in textured Co1-xFex thin films, effective magnetostriction λeff as large as 260 p.p.m. can be achieved at low-saturation field of ∼10mT. Assuming λ100 is the dominant component, this number translates to an upper limit of magnetostriction of λ100 ≈5λeff >1,000p.p.m. Microstructural analyses of Co1-xFex films indicate that maximal magnetostriction occurs at compositions near the (fcc+bcc)/bcc phase boundary and originates from precipitation of an equilibrium Co-rich fcc phase embedded in a Fe-rich bcc matrix. The results indicate that the recently proposed heterogeneous magnetostriction mechanism can be used to guide exploration of compounds with unusual magnetoelastic properties. © 2011 Macmillan Publishers Limited. All rights reserved.

Cite

CITATION STYLE

APA

Hunter, D., Osborn, W., Wang, K., Kazantseva, N., Hattrick-Simpers, J., Suchoski, R., … Takeuchi, I. (2011). Giant magnetostriction in annealed Co1-xFex thin-films. Nature Communications, 2(1). https://doi.org/10.1038/ncomms1529

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free