A path recorder algorithm for Multiple Longest Common Subsequences (MLCS) problems

15Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Motivation: Searching the Longest Common Subsequences of many sequences is called a Multiple Longest Common Subsequence (MLCS) problem which is a very fundamental and challenging problem in many fields of data mining. The existing algorithms cannot be applicable to problems with long and large-scale sequences due to their huge time and space consumption. To efficiently handle large-scale MLCS problems, a Path Recorder Directed Acyclic Graph (PRDAG) model and a novel Path Recorder Algorithm (PRA) are proposed. Results: In PRDAG, we transform the MLCS problem into searching the longest path from the Directed Acyclic Graph (DAG), where each longest path in DAG corresponds to an MLCS. To tackle the problem efficiently, we eliminate all redundant and repeated nodes during the construction of DAG, and for each node, we only maintain the longest paths from the source node to it but ignore all non-longest paths. As a result, the size of the DAG becomes very small, and the memory space and search time will be greatly saved. Empirical experiments have been performed on a standard benchmark set of both DNA sequences and protein sequences. The experimental results demonstrate that our model and algorithm outperform the related leading algorithms, especially for large-scale MLCS problems.

Cite

CITATION STYLE

APA

Wei, S., Wang, Y., Yang, Y., & Liu, S. (2020). A path recorder algorithm for Multiple Longest Common Subsequences (MLCS) problems. Bioinformatics, 36(10), 3035–3042. https://doi.org/10.1093/bioinformatics/btaa134

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free