Abiotic stress resistance, a novel moonlighting function of ribosomal protein RPL44 in the halophilic fungus Aspergillus glaucus

59Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ribosomal proteins are highly conserved components of basal cellular organelles, primarily involved in the translation of mRNA leading to protein synthesis. However, certain ribosomal proteins moonlight in the development and differentiation of organisms. In this study, the ribosomal protein L44 (RPL44), associated with salt resistance, was screened from the halophilic fungus Aspergillus glaucus (AgRPL44), and its activity was investigated in Saccharomyces cerevisiae and Nicotiana tabacum. Sequence alignment revealed that AgRPL44 is one of the proteins of the large ribosomal subunit 60S. Expression of AgRPL44 was upregulated via treatment with salt, sorbitol, or heavy metals to demonstrate its response to osmotic stress. A homologous sequence from the model fungus Magnaporthe oryzae, MoRPL44, was cloned and compared with AgRPL44 in a yeast expression system. The results indicated that yeast cells with overexpressed AgRPL44 were more resistant to salt, drought, and heavy metals than were yeast cells expressing MoRPL44 at a similar level of stress. When AgRPL44 was introduced into M. oryzae, the transformants displayed obviously enhanced tolerance to salt and drought, indicating the potential value of AgRPL44 for genetic applications. To verify the value of its application in plants, tobacco was transformed with AgRPL44, and the results were similar. Taken together, we conclude that AgRPL44 supports abiotic stress resistance and may have value for genetic application. © 2014, American Society for Microbiology.

Cite

CITATION STYLE

APA

Liu, X. D., Xie, L., Wei, Y., Zhou, X., Jia, B., Liu, J., & Zhang, S. (2014). Abiotic stress resistance, a novel moonlighting function of ribosomal protein RPL44 in the halophilic fungus Aspergillus glaucus. Applied and Environmental Microbiology, 80(14), 4294–4300. https://doi.org/10.1128/AEM.00292-14

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free