In the present work, we present the use of gold nanorods as plasmonic nanoparticles for selective photothermal therapy of human acute (HL-60) and chronicle (K-562) leukemia cells using a near-infrared laser. We improved a published methodology of gold nanorods conjugation to generate high yields of narrow band gold nanorods with an optical absorption centered at 760 nm. The manufactured nanorods were pegylated and conjugated with monoclonal antibody to become non-toxic as biocompatible nanothermolysis agent. Gold nanorods are synthesized and conjugated to CD33 monoclonal antibody. After pegylation, or conjugation with CD33 antibody, gold nanorods were non-toxic to acute and chronic leukemia cells. Our modified gold nanorods CD33 conjugates shown high level of accumulation for both leukemia cell lines, and successful used for nanothermolysis of human leukemia cells in vitro. Each sample was illuminated with 1 or 3 laser shots as for low and for high laser fluence. The radiation was provided by a Quanta Systems q-switched titanium sapphire laser, and the system was designed for maximum sample coverage using non-focused illumination. HL-60 and K-562 cells were treated for 45 min with gold nanorods CD33 conjugated, or with pegylated gold nanorods. The effect of pulsed-laser nanothermolysis for acute and chronic leukemia cells were investigated with cell counting for number of living cells, percentage of cell death and functional parameters such as damage of cell membrane and metabolic activity. Gold nanorods CD33 conjugates significantly increase cell damage for low fluence laser and completely destroyed cancer cells after 3 pulses for low fluence (acute leukemia) and for high fluence laser as for HL-60 (acute) and for K-562 (chronicle) leukemia cells.
CITATION STYLE
Liopo, A. V., Conjusteau, A., Konopleva, M., Andreeff, M., & Oraevsky, A. A. (2012). Laser nanothermolysis of human leukemia cells using functionalized plasmonic nanoparticles. Nano Biomedicine and Engineering, 4(2). https://doi.org/10.5101/nbe.v4i2.p66-75
Mendeley helps you to discover research relevant for your work.