Objective: The aim of this study was to determine the influence of different energy densities on the heat generated during photoactivation of Filtek Z250 (3M/ESPE) and Z100 (3M/ESPE) composite resins with different dentin and composite thickness. Material and Methods: The temperature increase was registered with a type-K thermocouple connected to a digital thermometer (Iopetherm 46). A chemically polymerized acrylic resin base was prepared to serve as a guide for the thermocouple and as a support for 0.5-, 1.0-, and 1.5-mm-thick bovine dentin discs. Circular elastomer molds (1.0 mm-height × 3.0-mm diameter or 2.0-mm height × 3.0-mm diameter) were adapted on the acrylic resin base to standardize the composite resin thickness. A conventional halogen light-curing unit (XL 2500, 3M/ESPE) was used with light intensity of 700 mW/cm2. Energy density was calculated by the light intensity applied during a certain time with values of 28 J/cm2 for Z100 and 14 J/cm2 for Filtek Z250. The temperature change data were subjected to three-way ANOVA and Tukey's test at 5% level. Results: The higher energy density (Z100) promoted greater temperature increase (p<0.05) than the lower energy density (Filtek Z250). For both composites and all composite thicknesses, the lowest dentin thickness (0.5 mm) yielded significantly higher (p<0.05) temperature increase than the other two dentin thicknesses. The 1-mm-thick composite resin layer yielded significantly higher (p<0.05) temperature changes for both composites and all dentin thicknesses. Conclusions: Temperature increase was influenced by higher energy density and dentin/composite thickness.
CITATION STYLE
Guiraldo, R. D., Consani, S., de Souza, A. S., Consani, R. L. X., Sinhoreti, M. A. C., & Correr-Sobrinho, L. (2009). Influence of light energy density on heat generation during photoactivation of dental composites with different dentin and composite thickness. Journal of Applied Oral Science, 17(4), 289–293. https://doi.org/10.1590/S1678-77572009000400005
Mendeley helps you to discover research relevant for your work.