The public transport system is considered as one of the most important subsystems in metropolises for achieving sustainability objectives by mediating resources and travel demand. Representing the various urban transport networks is crucial in understanding travel behavior and the function of the transport system. However, previous studies have ignored the coupling relationships between multi-mode transport networks and travel flows. To address this problem, we constructed a multilayer network to illustrate two modes of transport (bus and metro) by assigning weights of travel flow and efficiency. We explored the scaling of the public transport system to validate the multilayer network and offered new visions for transportation improvements by considering population. The proposed methodology was demonstrated by using public transport datasets of Shanghai, China. For both the bus network and multilayer network, the scaling of node degree versus Population were explored at 1 km * 1 km urban cells. The results suggested that in the multilayer network, the scaling relations between node degree and population can provide valuable insights into quantifying the integration between the public transport system and urban land use, which will benefit sustainable improvements to cities.
CITATION STYLE
Gu, Y., & Wang, Y. (2022). Using weighted multilayer networks to uncover scaling of public transport system. Environment and Planning B: Urban Analytics and City Science, 49(6), 1631–1645. https://doi.org/10.1177/23998083211062905
Mendeley helps you to discover research relevant for your work.