Identification of active release planes using ground-based differential InSAR at the Randa rock slope instability, Switzerland

30Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

Abstract

Five ground-based differential interferometric synthetic aperture radar (GB-DInSAR) surveys were conducted between 2005 and 2007 at the rock slope instability at Randa, Switzerland. Resultant displacement maps revealed, for the first time, the presence of an active basal rupture zone and a lateral release surface daylighting on the exposed 1991 failure scarp. Structures correlated with the boundaries of in- terferometric displacement domains were confirmed using a helicopter-based LiDAR DTM and oblique aerial photography. Former investigations at the site failed to conclusively detect these active release surfaces essential for kinematic and hazard analysis of the instability, although their existence had been hypothesized. The determination of the basal and lateral release planes also allowed a more accurate estimate of the currently unstable volume of 5.7± 1.5 million m3. The displacement patterns reveal that two different kinematic behaviors dominate the instability, i.e. toppling above 2200 m and translational failure below. In the toppling part of the instability the areas with the highest GB-DInSAR displacements correspond to areas of enhanced micro-seismic activity. The observation of only few strongly active discontinuities daylighting on the 1991 failure surface points to a rather uniform movement in the lower portion of the instability, while most of the slip occurs along the basal rupture plane. Comparison of GB-DInSAR displacements with mapped discontinuities revealed correlations between displacement patterns and active structures, although spatial offsets occur as a result of the effective resolution of GB- DInSAR. Similarly, comparisons with measurements from total station surveys generally showed good agreement. Discrepancies arose in several cases due to local movement of blocks, the size of which could not be resolved using GB-DInSAR.

Cite

CITATION STYLE

APA

Gischig, V., Loew, S., Kos, A., Moore, J. R., Raetzo, H., & Lemy, F. (2009). Identification of active release planes using ground-based differential InSAR at the Randa rock slope instability, Switzerland. Natural Hazards and Earth System Science, 9(6), 2027–2038. https://doi.org/10.5194/nhess-9-2027-2009

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free