Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study

  • Wang R
  • Nuttall A
132Citations
Citations of this article
97Readers
Mendeley users who have this article in their library.

Abstract

Hearing loss can mean severe impairment to the quality of life. However, the biomechanical mechanisms of how the hearing organ, i.e., the organ of Corti (OC), responds to sound are still elusive, largely because there is currently no means available to image the 3-D motion characteristics of the OC. We present a novel use of the phase-sensitive spectral domain optical coherence tomography (PSOCT) to characterize the motion of cellular compartments within the OC at a subnanometer scale. The PSOCT system operates at 1310 nm with a spatial resolution of approximately 16 mum and an imaging speed of 47,000 A-lines/s. The phase changes of the spectral interferograms induced by the localized tissue motion are used to quantify the vibration magnitude. Fourier transform analysis of the phase changes improves the system sensitivity to sense minute vibrations smaller than 1 nm. We demonstrate that the PSOCT system is feasible to image the meaningful vibration of cellular compartments within the OC with an unprecedented sensitivity down to approximately 0.5 A.

Cite

CITATION STYLE

APA

Wang, R. K., & Nuttall, A. L. (2010). Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study. Journal of Biomedical Optics, 15(5), 056005. https://doi.org/10.1117/1.3486543

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free