An All-Solution-Based Hybrid CMOS-Like Quantum Dot/Carbon Nanotube Inverter

29Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The development of low-cost, flexible electronic devices is subordinated to the advancement in solution-based and low-temperature-processable semiconducting materials, such as colloidal quantum dots (QDs) and single-walled carbon nanotubes (SWCNTs). Here, excellent compatibility of QDs and SWCNTs as a complementary pair of semiconducting materials for fabrication of high-performance complementary metal-oxide-semiconductor (CMOS)-like inverters is demonstrated. The n-type field effect transistors (FETs) based on I− capped PbS QDs (Vth = 0.2 V, on/off = 105, SS-th = 114 mV dec−1, µe = 0.22 cm2 V−1 s−1) and the p-type FETs with tailored parameters based on low-density random network of SWCNTs (Vth = −0.2 V, on/off > 105, SS-th = 63 mV dec−1, µh = 0.04 cm2 V−1 s−1) are integrated on the same substrate in order to obtain high-performance hybrid inverters. The inverters operate in the sub-1 V range (0.9 V) and have high gain (76 V/V), large maximum-equal-criteria noise margins (80%), and peak power consumption of 3 nW, in combination with low hysteresis (10 mV).

Cite

CITATION STYLE

APA

Shulga, A. G., Derenskyi, V., Salazar-Rios, J. M., Dirin, D. N., Fritsch, M., Kovalenko, M. V., … Loi, M. A. (2017). An All-Solution-Based Hybrid CMOS-Like Quantum Dot/Carbon Nanotube Inverter. Advanced Materials, 29(35). https://doi.org/10.1002/adma.201701764

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free