A Phishing URL Classification Technique using Machine Learning Approach

  • Tiwari M
  • et al.
N/ACitations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The phishing attack is one of the very common attacks deployed using the social engineering techniques. The attack tries to capture the victim’s personal and sensitive information to trick and can results in terms of financial and social reputation loss. In this presented work the main focus is to investigate the phishing techniques and their detection approaches. In this context first a review on recently contributed URL based phishing attack detection and prevision techniques is prepared. Further based on the suitable techniques a new data mining based model is proposed for implementation. The proposed model first take training on phish tank database URLs and then identify the similar pattern based URLs in two classes legitimate and phishing. First the dataset is preprocessed and the features are computed. The computed features are then transformed in terms of transactional database and association rules are prepared. To generate the association rules the apriori algorithm and FP-Tree algorithm is employed. Based on conducted experiments, the performance the FP-Tree based classification technique much efficient and accurate as compared to apriori algorithm, because the apriori algorithm is much time expensive then the FP-Tree. Finally the future extension of the work is also suggested.

Cite

CITATION STYLE

APA

Tiwari, M., & Arjariya, Dr. T. (2021). A Phishing URL Classification Technique using Machine Learning Approach. International Journal of Innovative Technology and Exploring Engineering, 10(3), 73–79. https://doi.org/10.35940/ijitee.c8338.0110321

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free