Forecasting hierarchical time series in power generation

16Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

Academic attention is being paid to the study of hierarchical time series. Especially in the electrical sector, there are several applications in which information can be organized into a hierarchical structure. The present study analyzed hourly power generation in Brazil (2018–2020), grouped according to each of the electrical subsystems and their respective sources of generating energy. The objective was to calculate the accuracy of the main measures of aggregating and disaggregating the forecasts of the Autoregressive Integrated Moving Average (ARIMA) and Error, Trend, Seasonal (ETS) models. Specifically, the following hierarchical approaches were analyzed: (i) bottom-up (BU), (ii) top-down (TD), and (iii) optimal reconciliation. The optimal reconciliation models showed the best mean performance, considering the primary predictive windows. It was also found that energy forecasts in the South subsystem presented greater inaccuracy compared to the others, which signals the need for individualized models for this subsystem.

Cite

CITATION STYLE

APA

Gontijo, T. S., & Costa, M. A. (2020). Forecasting hierarchical time series in power generation. Energies, 13(14). https://doi.org/10.3390/en13143722

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free