Abstract
Sample surveys are an essential approach used in veterinary research and investigation. A sample obtained from a well-designed sampling process along with robust data analysis can provide valuable insight into the attributes of the target population. Two approaches, design-based or model-based, can be used as inferential frameworks for analysing survey data. Compared to the model-based approach, the design-based approach is usually more straightforward and directly makes inferences about the finite target population (such as the dairy cows in a herd or dogs in a region) rather than an infinite superpopulation. In this paper, the concept of probability sampling and the design-based approach is briefly reviewed, followed by a discussion of the estimations and their justifications in the context of several different elementary sampling methods, including simple random sampling, stratified random sampling, and one-stage cluster sampling. Finally, a concrete example of a complex survey design (involving multistage sampling and stratification) is demonstrated, illustrating how finding unbiased estimators and their corresponding variance formulas for a complex survey builds on the techniques used in elementary sampling methods.
Author supplied keywords
Cite
CITATION STYLE
Aaron Yang, D., & Laven, R. A. (2021, June 1). Design-based approach for analysing survey data in veterinary research. Veterinary Sciences. MDPI AG. https://doi.org/10.3390/vetsci8060105
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.