Abstract
Efficient cleavage of β-O-4 bonds in lignin to high-yield aromatic compounds for the potential production of fuels and chemicals is vital for the economics of the modern biorefinery industry. This work is distinct in that a detailed mechanistic analysis of the reaction pathways of veratrylglycero-β-guaiacyl ether (VGE) catalyzed by transition-metal-free solid acid zeolite in aqueous conditions at high hydrogen pressure has been performed. VGE degradation produced high monomers yields (≈87 %), including guaiacol (48.2 %), 1-(3,4-dimethoxyphenyl)ethanol (10.3 %), 1-(3,4-dimethoxyphenyl)-2-propanol (6.1 %), 3,4-dimethoxyphenylpropanol (4.7 %), 3,4-dimethoxycinnamyl alcohol (4.1 %), and 1,2-dimethoxy-4-propylbenzene (2 %). The products were identified and confirmed by the in situ solid-state magic angle spinning (MAS) 13C NMR spectroscopy in real-time conditions and the two-dimensional gas chromatography (GC×GC). A variety of products reveal the crucial role of hydrogen, water, and acid sites for heterolytic cleavage of the β-O-4 bond in VGE. Decarbonylation, hydrogenolysis, hydrogenation, and dehydration reaction pathways are proposed and further validated using first-principles calculations.
Author supplied keywords
Cite
CITATION STYLE
Ruan, H., Xu, Z., Kumar, A., Feng, M., Lipton, A. S., Walter, E. D., … Yang, B. (2023). Elucidating the Reaction Pathways of Veratrylglycero-β-Guaiacyl Ether Degradation over Metal-Free Solid Acid Catalyst with Hydrogen**. ChemSusChem, 16(6). https://doi.org/10.1002/cssc.202202001
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.