A better understanding of lung microorganisms is conducive to early diagnosis and treatment and will improve the prognosis of HIV-infected patients with pulmonary infection. Currently, few studies have systematically described the spectrum of pulmonary infection among HIV-infected patients. Comparison of lung microbiomes between HIV-infected and uninfected patients with pulmonary infection by metagenomic next-generation sequencing (mNGS) has not been described in China. The lung microbiomes detected in bronchoalveolar fluid (BALF) by mNGS among HIV-infected and uninfected patients with pulmonary infection were reviewed in the First Hospital of Changsha between January 2019 and June 2022. In total, 476 HIV-infected and 280 uninfected patients with pulmonary infection were enrolled. Compared with HIV-uninfected patients, the proportions of Mycobacterium ( P = 0.011), fungi ( P < 0.001), and viruses ( P < 0.001) were significantly higher in HIV-infected patients. The higher positive rate of Mycobacterium tuberculosis (MTB; P = 0.018), higher positive rates of Pneumocystis jirovecii and Talaromyces marneffei (all P < 0.001), and higher positive rate of cytomegalovirus ( P < 0.001) contributed to the increased proportions of Mycobacterium , fungi, and viruses among HIV-infected patients, respectively. The constituent ratios of Streptococcus pneumoniae ( P = 0.007) and Tropheryma whipplei ( P = 0.002) in the bacteria spectrum were significantly higher, while the constituent ratio of Klebsiella pneumoniae ( P = 0.005) was significantly lower in HIV-infected patients than in HIV-uninfected patients. Compared with HIV-uninfected patients, the constituent ratios of P. jirovecii and T. marneffei (all P < 0.001) in the fungal spectrum were significantly higher, while the constituent ratios of Candida and Aspergillus (all P < 0.001) were significantly lower in HIV-infected patients. In comparison to HIV-infected patients without antiretroviral therapy (ART), the proportions of T. whipplei ( P = 0.001), MTB ( P = 0.024), P. jirovecii ( P < 0.001), T. marneffei ( P < 0.001), and cytomegalovirus ( P = 0.008) were significantly lower in HIV-infected patients on ART. Significant differences in lung microbiomes exist between HIV-infected and uninfected patients with pulmonary infection, and ART influences the lung microbiomes among HIV-infected patients with pulmonary infection. IMPORTANCE A better understanding of lung microorganisms is conducive to early diagnosis and treatment and will improve the prognosis of HIV-infected patients with pulmonary infection. Currently, few studies have systematically described the spectrum of pulmonary infection among HIV-infected patients. This study is the first to provide comprehensive information on the lung microbiomes of HIV-infected patients with pulmonary infection (as assessed by more sensitive metagenomic next-generation sequencing of bronchoalveolar fluid) compared with those from HIV-uninfected patients, which could provide a reference for the etiology of pulmonary infection among HIV-infected patients.
CITATION STYLE
Tan, Y., Chen, Z., Zeng, Z., Wu, S., Liu, J., Zou, S., … Liang, K. (2023). Microbiomes Detected by Bronchoalveolar Lavage Fluid Metagenomic Next-Generation Sequencing among HIV-Infected and Uninfected Patients with Pulmonary Infection. Microbiology Spectrum, 11(4). https://doi.org/10.1128/spectrum.00005-23
Mendeley helps you to discover research relevant for your work.