Novel quadruple-band microwave metamaterial absorber

36Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this paper, we report the design, analysis, and simulation of a novel quadruple-band metamaterial absorber at microwave frequencies. The absorber is composed of delicate periodic patterned structures and a metallic background plane, which are separated by a dielectric substrate. By manipulating the periodic patterned structures, nearly perfect absorption can be obtained at four specific resonance frequencies. Moreover, the significantly high absorptions of quadruple peaks are insensitive to polarization independence, and the influence of the incident angle on the absorption for both TE and TM modes was also analyzed. To explain the absorption mechanism of the suggested structures, the electric and magnetic field distributions and the resistance matching principle were given. Importantly, the design idea has the ability to be extended to other frequencies, such as terahertz, infrared, and optical frequencies.

Cite

CITATION STYLE

APA

Wang, N., Tong, J., Zhou, W., Jiang, W., Li, J., Dong, X., & Hu, S. (2015). Novel quadruple-band microwave metamaterial absorber. IEEE Photonics Journal, 7(1). https://doi.org/10.1109/JPHOT.2015.2399356

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free