Optimasi adalah pencarian nilai-nilai variabel yang dianggap optimal untuk mencapai hasil yang diinginkan. Untuk memecahkan masalah optimasi tersebut, tentunya diperlukan algoritma yang handal. Algoritma Hill Climbing dan Algotrima Ant Colony adalah metode dari sekian banyak metode kecerdasan buatan untuk menyelesaikan permasalahan optimasi. Karena algoritmanya yang cukup sederhana, metode Hill Climbing telah banyak diterapkan dalam berbagai aplikasi. Disamping itu metode Hill Climbing juga mengefisienkan penggunaan memori yang besar. Algoritma Ant Colony adalah algoritma yang diadopsi dari perilaku koloni semut. Secara alamiah koloni semut mampu menemukan rute terpendek dalam perjalanan dari sarang ke tempat-tempat sumber makanan, berdasarkan jejak kaki pada lintasan yang telah dilewati. Dari hasil penelitian yang dilakukan dengan menggunakan algoritma Hill Climbing dan Algoritma Ant Colony diperoleh rute optimum ferry di Pulau Ambon, Pulau Seram, dan Pulau-Pulau Lease yang berbeda. Pada Algoritma Hill Climbing diperoleh rute yang optimal yaitu Tulehu – Wainama – Umeputih – Wailey – Amahai - Nalahia dengan jarak tempuh 126 Km, sedangkan menggunakan Algoritma Ant Colony diperoleh rute yang optimal yaitu Tulehu – Wainama – Umeputih – Wailey – Amahai – Nalahia - Tulehu dengan jarak tempuh 197 Km
CITATION STYLE
Ilwaru, V. Y. I., Sumah, T., Lesnussa, Y. A., & Leleury, Z. A. (2017). PERBANDINGAN ALGORITMA HILL CLIMBING DAN ALGORITMA ANT COLONY DALAM PENENTUAN RUTE OPTIMUM. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 11(2), 139–150. https://doi.org/10.30598/barekengvol11iss2pp139-150
Mendeley helps you to discover research relevant for your work.