Manually rattan and bamboo are more easily bent than wood. A further question, whether these are due to the softening behaviour of chemical components or their anatomical structures. This research is aiming to understand the softening behaviour and viscoelastic property of wood, rattan and bamboo as lignocellulosic materials. Nine years-old fast-growing teak wood (Tectona grandis L.f.), rattan (Calamus sp.), and three-yearsold andong bamboo (Gigantochloa pseudoarundinaceae (Steud.) Widjaja) were used for the experiments. Wood and rattan samples were taken from the bottom, middle and upper parts. Bamboo samples were cut from the 1st to 20th internodes. Static bending tests were carried out in fresh (green) as control samples, air-dried, and softened by microwave heating (MW) for 1 minute to determine the modulus of rupture (MOR) and modulus of elasticity (MOE). The results showed that the MOR and MOE values of wood, rattan, and bamboo increased from fresh to air-dried condition, and decreased by MW. When compared at the same density, a drastic increase was observed for the normalized MOR value in air-dried rattan, i.e. 2.5 fold. However, the decreasing of all the normalized MOR values were almost the same, i.e. 0.5 fold when MW softened them. The improvement also appeared for the normalized MOE value in air-dried rattan, i.e. 3 fold and decreased to almost zero by MW. These results indicated that rattan was more easily bent, followed by bamboo and then wood. Hydrothermal properties of chemical components significantly affected the changes of strength (MOR) and elastic properties (MOE). However, the differences in bending strength of wood, rattan, and bamboo were more likely due to differences in their anatomical structures.
CITATION STYLE
Dwianto, W., Damayanti, R., Darmawan, T., Sejati, P. S., Akbar, F., Adi, D. S., … Triwibowo, D. (2020). Bending strength of lignocellulosic materials in softening condition. Indonesian Journal of Forestry Research, 7(1), 59–70. https://doi.org/10.20886/ijfr.2020.7.1.59-70
Mendeley helps you to discover research relevant for your work.