The past two decades have witnessed a revolutionary era for peripheral bronchoscopy. Though the initial description of radial endobronchial ultrasound can be traced back to 1992, it was not until the mid-2000s that its utilization became commonplace, primarily due to the introduction of electromagnetic navigation (EMN) bronchoscopy. While the diagnostic yield of EMN-assisted sampling has shown substantial improvement over historical fluoroscopy-assisted bronchoscopic biopsy, its diagnostic yield plateaued at around 70%. Factors contributing to this relatively low diagnostic yield include discrepancies in computed tomography to body divergence, which led to unsuccessful lesion localization and resultant unsuccessful sampling of the lesion. Furthermore, much of peripheral bronchoscopy utilized a plastic extended working channel whose tips were difficult to finely aim at potential targets. However, the recent introduction of robotic-assisted bronchoscopy, and its associated stability within the peripheral lung, has ignited optimism for its potential to significantly enhance the diagnostic performance for peripheral lesions. Moreover, some envision this technology eventually playing a pivotal role in the therapeutic delivery to lung tumors. This review aims to describe the currently available robotic-assisted bronchoscopy technologies and to discuss the existing scientific evidence supporting these.
CITATION STYLE
Prado, R. M. G., Cicenia, J., & Almeida, F. A. (2024, February 1). Robotic-Assisted Bronchoscopy: A Comprehensive Review of System Functions and Analysis of Outcome Data. Diagnostics. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/diagnostics14040399
Mendeley helps you to discover research relevant for your work.