Universality of local spectral statistics of random matrices

75Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

The Wigner-Dyson-Gaudin-Mehta conjecture asserts that the local eigenvalue statistics of large random matrices exhibit universal behavior depending only on the symmetry class of the matrix ensemble. For invariant matrix models, the eigenvalue distributions are given by a log-gas with potential V and inverse temperature β = 1, 2, 4, corresponding to the orthogonal, unitary and symplectic ensembles. For β ∉ {1, 2, 4}, there is no natural random matrix ensemble behind this model, but the statistical physics interpretation of the log-gas is still valid for all β > 0. The universality conjecture for invariant ensembles asserts that the local eigenvalue statistics are independent of V. In this article, we review our recent solution to the universality conjecture for both invariant and non-invariant ensembles. We will also demonstrate that the local ergodicity of the Dyson Brownian motion is the intrinsic mechanism behind the universality. Furthermore, we review the solution of Dyson's conjecture on the local relaxation time of the Dyson Brownian motion. Related questions such as delocalization of eigenvectors and local version of Wigner's semicircle law will also be discussed. © 2012 American Mathematical Society.

Cite

CITATION STYLE

APA

Erdos, L., & Yau, H. T. (2012). Universality of local spectral statistics of random matrices. Bulletin of the American Mathematical Society, 49(3), 377–414. https://doi.org/10.1090/S0273-0979-2012-01372-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free