A 2 × 2 ultra-wideband MIMO flexible antenna with a low profile and good isolation was designed for Internet of Things (IoT) realms and wearable devices. The antenna elements were placed on a novel flexible substrate of liquid crystal polymer (LCP) with compact dimensions fed by a coplanar waveguide (CPW). In order to ameliorate isolation, the cross-shaped decoupling branches were placed among the antenna elements. The proposed UWB antenna can operate from 2.9 GHz to 10.86 GHz with a good reflection coefficient of S11 < −10 dB as well as a high isolation better than 22 dB. Its operating bands include 5G, WiFi, X-band, etc. Moreover, the parameters of diversity performance were also tested. These parameters included an average gain of approximately 4 dB, a low ECC of less than 0.01, and good diversity gain of 9.999. The flexible MIMO antenna performs well in bending and on-body conditions. To sum up, the antenna has good prospects in IoT applications and wearable fields.
CITATION STYLE
Zhang, J., Du, C., & Wang, R. (2022). Design of a Four-Port Flexible UWB-MIMO Antenna with High Isolation for Wearable and IoT Applications. Micromachines, 13(12). https://doi.org/10.3390/mi13122141
Mendeley helps you to discover research relevant for your work.