A heterogeneous "resting" pool of synaptic vesicles that is dynamically interchanged across boutons in mammalian CNS synapses

66Citations
Citations of this article
113Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Using pHluorin-tagged synaptic vesicle proteins we have examined the partitioning of these probes into recycling and nonrecycling pools at hippocampal nerve terminals in cell culture. Our studies show that for three of the major synaptic vesicle components, vGlut-1, VAMP-2, and Synaptotagmin I, ∼50-60% of the tagged protein appears in a recycling pool that responds readily to sustained action potential stimulation by mobilizing and fusing with the plasma membrane, while the remainder is targeted to a nonrecycling, acidic compartment. The fraction of recycling and nonrecycling (or resting) pools varied significantly across boutons within an individual axon, from 100% resting (silent) to 100% recycling. Single-bouton bleaching studies show that recycling and resting pools are dynamic and exchange between synaptic boutons. The quantitative parameters that can be extracted with the approaches outlined here should help elucidate the potential functional role of the resting vesicle pool. © 2008 The Author(s).

Cite

CITATION STYLE

APA

Fernandez-Alfonso, T., & Ryan, T. A. (2008). A heterogeneous “resting” pool of synaptic vesicles that is dynamically interchanged across boutons in mammalian CNS synapses. Brain Cell Biology, 36(1–4), 87–100. https://doi.org/10.1007/s11068-008-9030-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free