Inequality and inequity in network-based ranking and recommendation algorithms

26Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Though algorithms promise many benefits including efficiency, objectivity and accuracy, they may also introduce or amplify biases. Here we study two well-known algorithms, namely PageRank and Who-to-Follow (WTF), and show to what extent their ranks produce inequality and inequity when applied to directed social networks. To this end, we propose a directed network model with preferential attachment and homophily (DPAH) and demonstrate the influence of network structure on the rank distributions of these algorithms. Our main findings suggest that (i) inequality is positively correlated with inequity, (ii) inequality is driven by the interplay between preferential attachment, homophily, node activity and edge density, and (iii) inequity is driven by the interplay between homophily and minority size. In particular, these two algorithms reduce, replicate and amplify the representation of minorities in top ranks when majorities are homophilic, neutral and heterophilic, respectively. Moreover, when this representation is reduced, minorities may improve their visibility in the rank by connecting strategically in the network. For instance, by increasing their out-degree or homophily when majorities are also homophilic. These findings shed light on the social and algorithmic mechanisms that hinder equality and equity in network-based ranking and recommendation algorithms.

Cite

CITATION STYLE

APA

Espín-Noboa, L., Wagner, C., Strohmaier, M., & Karimi, F. (2022). Inequality and inequity in network-based ranking and recommendation algorithms. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-05434-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free