Towards scaling fully personalized PageRank: Algorithms, lower bounds, and experiments

224Citations
Citations of this article
98Readers
Mendeley users who have this article in their library.

Abstract

Personalized PageRank expresses link-based page quality around userselected pages in a similar way as PageRank expresses quality over the entire web. Existing personalized PageRank algorithms can, however, serve online queries only for a restricted choice of pages. In this paper we achieve full personalization by a novel algorithm that precomputes a compact database; using this database, it can serve online responses to arbitrary user-selected personalization. The algorithm uses simulated random walks; we prove that for a fixed error probability the size of our database is linear in the number of web pages. We justify our estimation approach by asymptotic worst-case lower bounds: we show that on some sets of graphs, exact personalized PageRank values can only be obtained from a database of size quadratic in the number of vertices. Furthermore, we evaluate the precision of approximation experimentally on the Stanford WebBase graph.

Cite

CITATION STYLE

APA

Fogaras, D., Rácz, B., Csalogány, K., & Sarlós, T. (2005). Towards scaling fully personalized PageRank: Algorithms, lower bounds, and experiments. Internet Mathematics, 2(3), 333–358. https://doi.org/10.1080/15427951.2005.10129104

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free