In this study, for the first time, a venturi device was integrated into a submerged membrane bioreactor (MBR) to improve membrane surface cleaning and bioreactor oxygenation. The performances of a blower and the venturi device were compared in terms of membrane fouling and bioreactor oxygenation. Upon comparing membrane fouling, the performances were similar for a low operation flux (18 L/m2.h); however, at a medium flux (32 L/m2.h), the venturi system operated 3.4 times longer than the blower system, and the final transmembrane pressure was one-third that of the blower system. At the highest flux studied (50 L/m2.h), the venturi system operated 5.4 times longer than the blower system. The most notable advantage of using a venturi device was that the dissolved oxygen (DO) concentration of the MBR was in the range of 7 to 8 mg/L at a 3 L/min aeration rate, while the DO concentration of the MBR was inadequate (a maximum of 0.29 mg/L) in the blower system. A clean water oxygenation test at a 3 L/min aeration rate indicated that the standard oxygen transfer rate for the venturi system was 9.5 times higher than that of the blower system.
CITATION STYLE
Kayaalp, N., & Ozturkmen, G. (2016). A venturi device reduces membrane fouling in a submerged membrane bioreactor. Water Science and Technology, 74(1), 147–156. https://doi.org/10.2166/wst.2016.194
Mendeley helps you to discover research relevant for your work.