NiFe2O4 nanoparticles supported on cotton-based carbon fibers and their application as a novel broadband microwave absorbent

28Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

In this work, NiFe2O4 nanoparticles were successfully supported on cotton-based carbon fibers through a flexible two-step approach consisting of calcination of cotton in a N2 atmosphere and subsequent hydrothermal reaction. The incorporation of the NiFe2O4 nanoparticles into cotton-based carbon fibers resulted in better impedance matching, leading to better microwave absorption performance than cotton-based carbon fibers and NiFe2O4 nanoparticles. For NiFe2O4/carbon fibers, reflection loss (RL) values less than-10 dB were obtained in the frequency range of 11.5-18 GHz with 2.4 mm thickness, which covered the entire Ku-band (from 12 to 18 GHz). Meanwhile, when the matching thickness was 3.2 mm, the RL values less than-10 dB were in the range of 8.0-12.7 GHz, which covered the entire X-band (from 8 to 12 GHz). This excellent and interesting microwave absorption performance can satisfy multiple applications. Owing to the characteristics of a cost-effective synthetic route, low density and excellent microwave absorption, the NiFe2O4/carbon fibers have a promising future in X-band and Ku-band absorption.

Cite

CITATION STYLE

APA

Li, W., Qi, H., Guo, F., Niu, X., Du, Y., & Chen, Y. (2019). NiFe2O4 nanoparticles supported on cotton-based carbon fibers and their application as a novel broadband microwave absorbent. RSC Advances, 9(51), 29959–29966. https://doi.org/10.1039/c9ra05844c

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free