Text2Light: Zero-Shot Text-Driven HDR Panorama Generation

77Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.
Get full text

Abstract

High-quality HDRIs (High Dynamic Range Images), typically HDR panoramas, are one of the most popular ways to create photorealistic lighting and 360-degree reflections of 3D scenes in graphics. Given the difficulty of capturing HDRIs, a versatile and controllable generative model is highly desired, where layman users can intuitively control the generation process. However, existing state-of-the-art methods still struggle to synthesize high-quality panoramas for complex scenes. In this work, we propose a zero-shot text-driven framework, Text2Light, to generate 4K+ resolution HDRIs without paired training data. Given a free-form text as the description of the scene, we synthesize the corresponding HDRI with two dedicated steps: 1) text-driven panorama generation in low dynamic range (LDR) and low resolution (LR), and 2) super-resolution inverse tone mapping to scale up the LDR panorama both in resolution and dynamic range. Specifically, to achieve zero-shot text-driven panorama generation, we first build dual codebooks as the discrete representation for diverse environmental textures. Then, driven by the pre-trained Contrastive Language-Image Pre-training (CLIP) model, a text-conditioned global sampler learns to sample holistic semantics from the global codebook according to the input text. Furthermore, a structure-aware local sampler learns to synthesize LDR panoramas patch-by-patch, guided by holistic semantics. To achieve super-resolution inverse tone mapping, we derive a continuous representation of 360-degree imaging from the LDR panorama as a set of structured latent codes anchored to the sphere. This continuous representation enables a versatile module to upscale the resolution and dynamic range simultaneously. Extensive experiments demonstrate the superior capability of Text2Light in generating high-quality HDR panoramas. In addition, we show the feasibility of our work in realistic rendering and immersive VR.

Cite

CITATION STYLE

APA

Chen, Z., Wang, G., & Liu, Z. (2022). Text2Light: Zero-Shot Text-Driven HDR Panorama Generation. ACM Transactions on Graphics, 41(6). https://doi.org/10.1145/3550454.3555447

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free