A Bayesian information criterion for singular models

99Citations
Citations of this article
120Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We consider approximate Bayesian model choice for model selection problems that involve models whose Fisher information matrices may fail to be invertible along other competing submodels. Such singular models do not obey the regularity conditions underlying the derivation of Schwarz's Bayesian information criterion BIC and the penalty structure in BIC generally does not reflect the frequentist large sample behaviour of the marginal likelihood. Although large sample theory for the marginal likelihood of singular models has been developed recently, the resulting approximations depend on the true parameter value and lead to a paradox of circular reasoning. Guided by examples such as determining the number of components in mixture models, the number of factors in latent factor models or the rank in reduced rank regression, we propose a resolution to this paradox and give a practical extension of BIC for singular model selection problems.

Cite

CITATION STYLE

APA

Drton, M., & Plummer, M. (2017). A Bayesian information criterion for singular models. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 79(2), 323–380. https://doi.org/10.1111/rssb.12187

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free