Hydronium Intercalation Enables High Rate in Hexagonal Molybdate Single Crystals

10Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Rapid proton transport in solid-hosts promotes a new chemistry in achieving high-rate Faradaic electrodes. Exploring the possibility of hydronium intercalation is essential for advancing proton-based charge storage. Nevertheless, this is yet to be revealed. Herein, a new host is reported of hexagonal molybdates, (A2O)x·MoO3·(H2O)y (A = Na+, NH4+), and hydronium (de)intercalation is demonstrated with experiments. Hexagonal molybdates show a battery-type initial reduction followed by intercalation pseudocapacitance. Fast rate of 200 C (40 A g−1) and long lifespan of 30 000 cycles are achieved in electrodes of monocrystals even over 200 µm. Solid-state nuclear magnetic resonance confirms hydronium intercalations, and operando measurements using electrochemical quartz crystal microbalance and synchrotron X-ray diffraction disclose distinct intercalation behaviours in different electrolyte concentrations. Remarkably, characterizations of the cycled electrodes show nearly identical structures and suggest equilibrium products are minimally influenced by the extent of proton solvation. These results offer new insights into proton electrochemistry and will advance correlated high-power batteries and beyond.

Cite

CITATION STYLE

APA

Guo, H., Wu, S., Chen, W., Su, Z., Wang, Q., Sharma, N., … Zhao, C. (2024). Hydronium Intercalation Enables High Rate in Hexagonal Molybdate Single Crystals. Advanced Materials, 36(6). https://doi.org/10.1002/adma.202307118

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free