Abstract
Neurodegenerative tauopathies are characterised by accumulation of hyperphosphorylated tau aggregates primarily degraded by autophagy. The 5′AMP-activated protein kinase (AMPK) is expressed in most cells, including neurons. Alongside its metabolic functions, it is also known to be activated in Alzheimer’s brains, phosphorylate tau, and be a critical autophagy activator. Whether it plays a neurotoxic or neuroprotective role remains unclear. In tauopathies stress conditions can result in AMPK activation, enhancing tau-mediated toxicity. Paradoxically, in these cases AMPK activation does not always lead to protective autophagic responses. Using a Drosophila in vivo quantitative approach, we have analysed the impact of AMPK and autophagy on tau-mediated toxicity, recapitulating the AMPK-mediated tauopathy condition: increased tau phosphorylation, without corresponding autophagy activation. We have demonstrated that AMPK binding to and phosphorylating tau at Ser-262, a site reported to facilitate soluble tau accumulation, affects its degradation. This phosphorylation results in exacerbation of tau toxicity and is ameliorated via rapamycin-induced autophagy stimulation. Our findings support the development of combinatorial therapies effective at reducing tau toxicity targeting tau phosphorylation and AMPK-independent autophagic induction. The proposed in vivo tool represents an ideal readout to perform preliminary screening for drugs promoting this process.
Author supplied keywords
Cite
CITATION STYLE
Galasso, A., Cameron, C. S., Frenguelli, B. G., & Moffat, K. G. (2017). An AMPK-dependent regulatory pathway in tau-mediated toxicity. Biology Open, 6(10), 1434–1444. https://doi.org/10.1242/bio.022863
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.