Abstract
Making a deep cut on the curb inlet has been used in some sponge-city (SPC) projects for road-bioretention stripes to manage stormwater runoff since they were easily implemented in the field. The efficiencies of the deep-cut curb inlets in those projects were unknown for lacking equation to evaluate their efficiencies. Two kinds of retrofit scenarios are commonly used: (1) The curb-cut cases when the deep cut is made only over the width of the curb inlet; (2) the road-curb cut cases when both the curb inlet and a small part of the road surface have a deep cut. An updated two-dimensional flow simulation program, FullSWOF-ZG, was used to determine two important parameters in road curb inlet design: The 100% interception curb inlet lengths (LT ) and the curb inlet efficiencies (Eci ). Eight-hundred retrofit modeling cases were compared with the no-cut cases to quantify the efficiency improvement of the deep-cut curb inlets. The simulation results show both LT and Eci of the curb-cut cases do not improve much. This case study with limited combinations of longitudinal and cross slopes and inlet lengths demonstrated that Eci of the road-curb cut cases improves to a large extent so that they can be used in the SPC projects and other urban drainage projects to reduce the flooding potentials. A general equation used to design and evaluate the road-curb cut inlets can be developed based on more simulation cases with a wide range of input parameters in a future study.
Author supplied keywords
Cite
CITATION STYLE
Li, X., Wang, C., Chen, G., Wang, Q., Hu, Z., Wu, J., … Fang, X. (2020). Evaluating efficiency improvement of deep-cut curb inlets for road-bioretention stripes. Water (Switzerland), 12(12). https://doi.org/10.3390/w12123368
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.