Childhood trauma and functional connectivity between amygdala and medial prefrontal cortex: A dynamic functional connectivity and large-scale network perspective

58Citations
Citations of this article
126Readers
Mendeley users who have this article in their library.

Abstract

Altered functional connectivity (FC) between the medial prefrontal cortex (mPFC) and amygdala is widely implicated as a neural mechanism explaining risk for psychopathology among those exposed to early life trauma. Nonetheless, contemporary neuroimaging research has shifted toward large-scale network models of brain function, and it is not clear how this common bi-nodal finding fits into larger-scale network models. Here, using dynamic functional connectivity (DFC) approaches combined with large-scale network analyses, the larger role of bi-nodal FC between mPFC and amygdala among a sample of adolescent girls is investigated. The sample was comprised of 30 healthy control girls and 26 girls exposed to either physical or sexual assault who underwent a resting-state scan during 3T MRI. DFC using a sliding window approach was used to create weighted, undirected, graphs from the resting-state data following parcellation with a 215 regions-of-interest (ROI) atlas. Using a priori ROI, the predicted finding of lessor FC between mPFC and amygdala as a function of early life trauma was replicated in this sample. By contrast, early life trauma was associated with greater large-scale network modularity. Using a dynamic FC approach, it is also demonstrated that within-subject variability in this bi-nodal FC closely tracks within-subject fluctuations in large-scale network patterns, including connectivity between a limbic and default mode network (in which the amygdala and mPFC nodes belong, respectively) as well as overall modular organization. These results suggest that bi-nodal FC, such as amygdala-mPFC FC, may generally reflect larger-scale network patterns. Future research is necessary to understand whether these associations between nodal FC and large-scale network organization better reflect top-down processes (larger-scale network organization drives bi-nodal FC) or bottom-up processes (bi-nodal FC drives larger-scale network organization) and the related impact of early life trauma.

Cite

CITATION STYLE

APA

Cisler, J. M. (2017). Childhood trauma and functional connectivity between amygdala and medial prefrontal cortex: A dynamic functional connectivity and large-scale network perspective. Frontiers in Systems Neuroscience, 11. https://doi.org/10.3389/fnsys.2017.00029

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free