Disrupting the α7nAChR–NR2A protein complex exerts antidepressant-like effects

7Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Major depressive disorder (MDD) is associated with significant morbidity and mortality. Most antidepressant medications target the serotonin and norepinephrine transporters, but a significant minority of patients do not respond to treatment and novel therapeutic targets are needed. We previously identified a protein complex composed of the α7 nicotinic acetylcholine receptor (nAChR) and NMDA glutamate receptors (NMDARs), through which α7nAChR upregulates NMDAR function. Disruption of the α7nAChR–NMDAR complex with an interfering peptide blocked α7nAChR-mediated upregulation of NMDAR function and cue-induced reinstatement of nicotine seeking in rat models of relapse. Here we report that disrupting the α7nAChR–NMDAR complex with the interfering peptide also has antidepressant-like effects in the forced swim test (FST), a common rat behaviour screening test for antidepressant effects. Furthermore, the interfering peptide significantly increases extracellular signal-regulated kinase (ERK) activity in the animals subjected to the FST. Our results provide a novel potential therapeutic target for the development of new antidepressant medications.

Cite

CITATION STYLE

APA

Jiang, A., Su, P., Li, S., Wong, A. H. C., & Liu, F. (2021). Disrupting the α7nAChR–NR2A protein complex exerts antidepressant-like effects. Molecular Brain, 14(1). https://doi.org/10.1186/s13041-021-00817-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free